The Harms of Historical Hyperbole

Dylan Spicker, PhD Candidate (Presented on June 30th 2021)

Who was George Dantzig?

An American Mathematician/Statistician who created the simplex algorithm for linear programming.

Operations Researchers: "Oh no. We can't check 70! combinations. That will take longer than the heat death of the universe. Aweh shucks."

The Simplex Algorithm ENTER STAGE RIGHT

The Simplex Algorithm: "I can do that, fast and effectively! Even on computers from the 1940s!"

Operations Researchers: "Yay! Now we can solve all of these allocation problems effectively."

Good George Dantzig Will Hunting

Some liberties were taken...

This incredible clickbait ACTUALLY EXISTS! You won't believe the view count!

0:00 / 7:12

A slacker was 20 minutes late and received two math problems... His solutions shocked his professor.

5,423,535 views · Sep 9, 2020

Life Stories 415K subscribers

Today I will tell you a relatively short story about a young man, which occurred many years ago. Even though the story contains nothing supernatural, I'm not exaggerating when I say that it was able to change the lives of millions across the world. In one way or another, every self-

SHOW MORE

📕 3.5K 🍌 SHARE =+ SAVE 🚥

SUBSCRIBE

1. George Dantzig was a genius.

- 1. George Dantzig was a genius.
- 2. Positive thinking makes you into a genius.

- 1. George Dantzig was a genius.
- 2. Positive thinking makes you into a genius.
- 3. Geniuses finish their disserations in a week.

Therein lies my beef. Those lessons are lies*.

* or at least not justified by the storied event.

The corre is a lie.

Vanguard Mathematician George Dantzig Dies

By Joe Holley May 19, 2005

George B. Dantzig, 90, a mathematician who devised a formula that revolutionized planning, scheduling, network design and other complex functions integral to modern-day business, industry and government, died May 13 at his home in Palo Alto, Calif. The cause of death, according to his daughter, was complications from diabetes and cardiovascular disease.

Dr. Dantzig was known as the father of linear programming and as the inventor of the "simplex method," an algorithm for solving linear programming problems.

"He really created the field," said Irvin Lustig, an operations research software consultant who was Dr. Dantzig's student at Stanford University. Dr. Dantzig's seminal work allows the airline industry, for example, to schedule crews and make fleet assignments. It's the tool that shipping companies use to determine how many planes they need and where their delivery trucks should be deployed. The oil industry long has used linear programming in refinery planning, as it determines how much of its raw product should become different grades of gasoline and how much should be used for petroleum-based byproducts. It's used in manufacturing, revenue management, telecommunications, advertising, architecture, circuit design and countless other areas. "The virtually simultaneous development of linear programming and computers led to an explosion of applications, especially in the industrial sector," Stanford University Professor Arthur aid in a statement. "For the first time in history, managers were given a powerful ration Smulating and comparing extremely large numbers of interdependent alternative courses of action to find one that was optimal."

Look at all the famous people.

Plot Twist I used to kind of love Dantzig.

We need to make sure we always take care of ourselves. It is important to do what is right for us, always, regardless of any extrinsic forces. You matter.

Please, if you ever need to chat, email me or reach out. dylan.spicker@uwaterloo.ca

We need to do a better job at recognizing the impact of the environments that we create have on others. My talk is tongue-in-cheek and meant to be entertaining, but that is simply a tool at cutting through our inability to discuss these issues frankly. I promise I will get back to less serious slides next, but please take this to heart. If it is helpful, remember that other people feel like you do and want to be there to support you.

So What is My Take? George Dantzig did what most graduate students do... ... and that is something we should celebrate.

Nyth

These were very famous problems...

¹ The main results of this paper were obtained by the authors independently of each other using entirely different methods.

² Research under contract with the Office of Naval Research.

87

How about we co-author this one?

ON THE FUNDAMENTAL LEMMA OF NEYMAN AND PEARSON¹

BY GEORGE B. DANTZIG AND ABRAHAM WALD²

Department of the Air Force and Columbia University

1. Summary and introduction. The following lemma proved by Neyman and Pearson [1] is basic in the theory of testing statistical hypotheses: LEMMA. Let $f_1(x), \dots, f_{m+1}(x)$ be m + 1 Borel measurable functions defined

over a finite dimensional Euclidean space R such that $\int_{-1}^{\infty} |f_i(x)| dx < \infty$ $(i = 1, \dots, m + 1)$. Let, furthermore, c_1, \dots, c_m be m given constants and s

the class of all Borel measurable subsets S of R for which

AMERICAN MATHEMATICAL SOCIET

MATHSCINET

MATHEMATICAL REVIEWS

MATHSCINET

Univ of Waterloo

ON THE NON-EXISTENCE OF TESTS OF "STUDENT'S" HYPOTHESIS HAVING POWER FUNCTIONS INDEPENDENT OF σ

By George B. Dantzig

1. Introduction. Consider a system of n random variables x_1, x_2, \dots, x_n where each is known to be normally distributed about the same but unknown mean, ξ , and with the same, but also unknown standard deviation σ . The assumption, H_0 , that ξ has some specified value, ξ_0 , e.g. $\xi_0 = 0$, while nothing is assumed about σ , is known as the "Student" Hypothesis. Two aspects of the hypothesis H_0 have been already studied extensively. If the alternatives with respect to which it is desired to test H_0 assume specifically that $\xi > \xi_0$, (or $\xi < 0$), then we have the so-called asymmetric case of "Student's Hypothesis" and it is known, [1], that there exists a uniformly most powerful test of H_0 . This consists in the rule, originally suggested by "Student," of rejecting H_0 whenever

Matches: 7				
Batch Download: Review	vs (HTML) VRetrieve Marked Retrieve First 50 Mark All Unmark All			
Publications results for	r "Citations of 39962"			
Sort by: Newest V	□ MR2346179 Reviewed Ahmad, Izhar; Sharma, Sarita Sufficiency in multiobjective subset programming involving generalized type-I functions. J. Global Optim. 39 (2007), no. 3, 473–481. 90C29 More links Review PDF Clipboard Journal Article			
	 MR2292141 Indexed Cottle, Richard; Johnson, Ellis; Wets, Roger George B. Dantzig (1914–2005). Notices Amer. Math. Soc. 54 (2007), no. 3, 344–362. 01A70 (90-03) Review PDF Clipboard Journal Article 4 Citations 			
Reviewed (4 MP2248450 projective generalized			
Indexed (a) fractional programming problems with set functions. J. Appl. Math. Comput. 22 (2006), no. 1-2, 181–191. (Reviewer: Margaret M. Wiecek) 90C29 (90C47) Review PDF Clipboard Journal Article 1 Citation 			
University of (3) Bucharest	MR2185925 Indexed Cottle, Richard W. George B. Dantzig: a legendary life in mathematical			
Department (2) of Applied	Programming. Math. Program. 105 (2006), no. 1, Ser. A, 1–8. 01A70			
Mathematics, Dalian University of Technology	MR2193867 Indexed Cottle, Richard W. George B. Dantzig: operations research icon. Oper. Res. 53 (2005), no. 6, 892–898. 01A70 (90-03) Review PDF Clipboard Journal Article 10 Citations			
Department (2) of Mathematics,	MR1994176 Reviewed Preda, Vasile; Stancu-Minasian, I. M.; Koller, Eduard On optimality and duality for multiobjective programming problems involving generalized d-type-I and related <i>n</i> -set functions. <i>J. Math. Anal. Appl.</i> 283 (2003), no. 1, 114–128. (Reviewer: Xin Min Yang) 90C29 (90C46) More links			
Authors	Review PDF Clipboard Journal Article 2 Citations			
Cottle, (3) Richard	MR1970576 Reviewed Preda, Vasile; Bătătorescu, Anton On duality for minmax generalized B-vex			

MATHEMATICAL REVIEWS				
Matches: 5 Batch Download: Reviews (Publications results for "((HTML) V Retrieve Marked Retrieve First 50 Mark All Citations of 2082"			
Sort by: Newest	MR3476613 Reviewed Perchet, Vianney; Rigolle bandit problems. Ann. Statist. 44 (2016), no. 2 (62C20) Review PDF Clipboard Journal Article 1 Citation			
Item Type Indexed (3)	MR2608463 Reviewed Aoshima, Makoto; Yata, I two-stage estimation methodologies and its app 571–600. 62L12 (62F12 62F25 62J15) Review PDF Clipboard Journal Article 1 Citation			
Reviewed (2) Institutions Department (2) Mathematics,	 MR2292141 Indexed Cottle, Richard; Johnson, Notices Amer. Math. Soc. 54 (2007), no. 3, 344 Review PDF Clipboard Journal Article 4 Citations MR2185925 Indexed Cottle, Richard W. George 			
Department (1) of Economics, Princeton	 programming. <i>Math. Program.</i> 105 (2006), no. Review PDF Clipboard Journal Article 13 Citations MR2193867 Indexed Cottle, Richard W. Georg (2005), no. 6, 892–898. 01A70 (90-03) 			

Home	Drafaranaaa	Erec Teels	Liele	Contract Up	Tarma of Line	Dies
Home	Preferences	Free Tools	нер	Contact Us	terms of use	вюд
				Univ	of Waterloo	
rk All Unn	nark All					
Rigollet, F no. 2, 66 n	Philippe; Ch 50-681. (Re	assang, S eviewer: A	ylvair Alwell	r; Snowbe Julius Oye	rg, Erik Bato t) 62L05 More	ched links
Yata, Kazuyoshi Asymptotic second-order consistency for ts applications. <i>Ann. Inst. Statist. Math.</i> 62 (2010), no. 3, More links						
1						
nnson, Ell 3, 344–30 15	lis; Wets, R 62. 01A70	oger Geor (90-03)	ge B.	Dantzig (1	1914–2005) More	links
George B), no. 1, 9 ons	. Dantzig: a Ser. A, 1–8	a legendar 01A70	y life	in mathen	natical More	links
George B	. Dantzig: (operations	rese	arch icon.	<i>Oper. Res.</i> ! More	53 links

ON THE FUNDAMENTAL LEMMA OF NEYMAN AND PEARSON¹

BY GEORGE B. DANTZIG AND ABRAHAM WALD²

Department of the Air Force and Columbia University

MR1970576 Reviewed Preda, Vasile; Bătătorescu, Anton On duality for minmax generalized B-vex

1. Summary and introduction. The follow Pearson [1] is basic in the theory of testing LEMMA. Let $f_1(x), \dots, f_{m+1}(x)$ be m +

over a finite dimensional Euclidean space

 $(i = 1, \dots, m + 1)$. Let, furthermore, c_1 , the class of all Borel measurable subsets S of

Cottle,

Richard

ON THE NON-EXISTENCE OF TESTS OF "STUDENT'S" HYPOTHESIS HAVING POWER FUNCTIONS INDEPENDENT OF σ

By George B. Dantzig

Princeton

MR2193867 Indexed Cottle, Richard W. Geor (2005), no. 6, 892-898. 01A70 (90-03)

v distributed about the same but unknown also unknown standard deviation σ . The ecified value, ξ_0 , e.g. $\xi_0 = 0$, while nothing he "Student" Hypothesis. Two aspects of ly studied extensively. If the alternatives to test H_0 assume specifically that $\xi > \xi_0$, ed asymmetric case of "Student's Hypotheexists a uniformly most powerful test of H_0 . suggested by "Student," of rejecting H_0

Home	Preferences	Free Tools	Help	Contact Us	Terms of Use	Blog
				Univ	of Waterloo	
c All Unn	nark All					
igollet, F no. 2, 66	Philippe; Ch 50-681. (Re	assang, S eviewer: A	<mark>ylvair</mark> Alwell	n; Snowbe Julius Oye	erg, Erik Bat et) 62L05 ©More	ched Iinks
ata, Kaz s applica	uyoshi Asyı ations. <i>Ann</i>	mptotic se . <i>Inst. Sta</i>	econd atist. I	-order cor Math. 62 (nsistency for 2010), no. More	r 3, e links
nson, Ell , 344–30	lis; Wets, R 52. 01A70 (oger Geor (90-03)	rge B.	Dantzig (1914–2005 More). e links
eorge B , no. 1, S ns	. Dantzig: a Ser. A, 1–8.	a legendaı 01A70	ry life	in mathei	matical More	links
eorge B	. Dantzig: d	operations	s rese	arch icon.	Oper. Res.	53 links

Nyth H

These problems were unsolved...

...

 \sim

- 58
- Online

Join

Create Post

Many statisticians tried and failed to solve these...

Assume that X_1, \ldots, X_n are all i.i.d. $N(\mu, \sigma^2)$. We wish to test $H_0: \mu = \mu_0$, versus the alternative, $H_1: \mu \neq \mu_0$.

Recall that the statistical power of a test is:

$$ext{Power} = eta(\mu,\sigma) = P(ext{Reject}\ H_0;\mu,\sigma)$$

Can you devise a test with power that is independent of σ ?

GENERALIZED POLAR COORDINATE TRANSFORMATION:

We can transform \mathbb{R}^n to a space with $(r, \theta_2, \theta_3, ..., \theta_n)$. The Jacobian of the transformation is given by $|\Delta_r| = r^{n-1}T(\theta)$.

W is the sample space.

 $\mathbf{x} = (x_1, \dots, x_n)$ is a sample point.

w is the rejection region.

 W_r is an *n*-dimensional hypersphere

(i.e. $\sum_{i=1}^{n} (x_i - \mu_0)^2 = r^2$).

 W_r is the intersection $W_r \cap w$.

SURFACE AREA OF A HYPERSPHERE:

The surface area of W_r is given by $\int \dots \int_{W_r} |\Delta| d\theta_1 \dots d\theta_n = r^{n-1} K$, where K is

functionally independent of r.

W is the sample space.

 $\mathbf{x} = (x_1, \dots, x_n)$ is a sample point.

w is the rejection region.

 W_r is an *n*-dimensional hypersphere

(i.e. $\sum_{i=1}^{n} (x_i - \mu_0)^2 = r^2$).

 w_r is the intersection $W_r \cap w$.

SIMILAR REGION:

Given a parametric family of distributions, parameterized by $\theta \in \Theta$, w is called similar to W with size α if $P(\mathbf{x} \in w; \theta) = \alpha$ for all $\theta \in \Theta$.

W is the sample space.

 $\mathbf{x} = (x_1, \dots, x_n)$ is a sample point.

w is the rejection region.

 W_r is an *n*-dimensional hypersphere

(i.e. $\sum_{i=1}^{n} (x_i - \mu_0)^2 = r^2$).

 w_r is the intersection $W_r \cap w$.

THEOREM 1 (NEYMAN-PEARSON, 1933):

If **x** is normally distributed, then *w* is similar to *W* with size α if and only if, for all $r \ge 0$ we have $P(\mathbf{x} \in w_r | \mathbf{x} \in W_r) = \alpha$.

W is the sample space.

 $\mathbf{x} = (x_1, \dots, x_n)$ is a sample point.

w is the rejection region.

 W_r is an *n*-dimensional hypersphere

(i.e. $\sum_{i=1}^{n} (x_i - \mu_0)^2 = r^2$).

 w_r is the intersection $W_r \cap w$.

STEP 1 (ASSUME THAT THE REGION EXISTS):

Suppose *w* exists with $P(\mathbf{x} \in w; \mu_0) = \alpha$ and $P(\mathbf{x} \in w; \mu_1) = \beta$ for all σ .

That is, w is similar with size α similar with size β , to normal distributions parameterized by σ .

W is the sample space.

 $\mathbf{x} = (x_1, \dots, x_n)$ is a sample point.

w is the rejection region.

 W_r is an *n*-dimensional hypersphere

(i.e. $\sum_{i=1}^{n} (x_i - \mu_0)^2 = r^2$).

 w_r is the intersection $W_r \cap w$.

STEP 2 (INVOKE THE NEYMAN-PEARSON THEOREM):

Define W_r, W_p, w_r, w_p . Then by **Theorem 1** $P(\mathbf{x} \in w_r | \mathbf{x} \in W_r) = \alpha$ and $P(\mathbf{x} \in w_p | \mathbf{x} \in W_p) = \beta$.

W is the sample space.

 $\mathbf{x} = (x_1, \dots, x_n)$ is a sample point.

w is the rejection region.

 W_r is an *n*-dimensional hypersphere

(i.e. $\sum_{i=1}^{n} (x_i - \mu_0)^2 = r^2$).

 w_r is the intersection $W_r \cap w$.

STEP 3 (USE SOME CLEVER GEOMETRY):

Note that normal distributions are constant on hyperspheres around their means.

By (S2) we know that w_r (and w_p) must be a constant proportion of the area of W_r (and W_p). Therefore $\int \cdots \int_{W_r} |\Delta| d\theta_1 \cdots d\theta_n = \alpha r^{n-1} K$ and $\int \cdots \int_{W_p} |\Delta_p| d\theta_1 \cdots d\theta_n = \beta p^{n-1} K.$

W is the sample space.

 $\mathbf{x} = (x_1, \dots, x_n)$ is a sample point.

w is the rejection region.

 W_r is an *n*-dimensional hypersphere

(i.e. $\sum_{i=1}^{n} (x_i - \mu_0)^2 = r^2$).

 W_r is the intersection $W_r \cap W$.

STEP 4 (INVOKE TRIANGLE INEQUALITY)

The distance from μ_0 to x is r, from μ_1 to x is p, and from μ_0 to μ_1 is $L = \sqrt{n} |\mu_0 - \mu_1|$. By the triangle inequality we get $r \le L + p$ and $p \le r + L$.

If g(t) is taken to be an arbitrary monotone function, then the inequality is preserved^{*}.

* or flipped, if g(t) is monotonically decreasing.

W is the sample space.

 $\mathbf{x} = (x_1, \dots, x_n)$ is a sample point.

w is the rejection region.

 W_r is an *n*-dimensional hypersphere

(i.e. $\sum_{i=1}^{n} (x_i - \mu_0)^2 = r^2$).

 w_r is the intersection $W_r \cap w$.

STEP 5 (INTEGRATE OVER OUR REGION):

Define $I_r(g) = \int_w g(r) dx_1 \cdots dx_n$ which is transformed to $I_r(g) = \int_w g(r) |\Delta| dr d\theta_2 \cdots d\theta_n$. We can compute

$$I_r(g) = \alpha K \int_0^\infty r^{n-1} g(r) dr.$$

Also: $I_p(g) = \beta K \int_0^\infty p^{n-1} g(p) dp$ and $I_{p+L}(g) = \beta K \int_0^\infty g(p+L) p^{n-1} dp$.

W is the sample space.

 $\mathbf{x} = (x_1, \dots, x_n)$ is a sample point.

w is the rejection region.

 W_r is an *n*-dimensional hypersphere

(i.e. $\sum_{i=1}^{n} (x_i - \mu_0)^2 = r^2$).

 w_r is the intersection $W_r \cap w$.

$$\frac{\text{STEP 6 (Fix THE MONOTONE FUNCTION)}}{\text{Take } g(t) = \exp(-ct) \text{ for } c \ge 0.}$$

$$\text{Then } g(r) \ge g(p+L) = g(p)g(L).$$

$$\text{Integrating gives } I_r = \alpha K \frac{\Gamma(n)}{c^n}, I_p = \beta K \frac{\Gamma(n)}{c^n} \text{ and } I_{p+L} = \beta K e^{-cL} \frac{\Gamma(n)}{c^n}.$$

W is the sample space.

 $\mathbf{x} = (x_1, \dots, x_n)$ is a sample point.

w is the rejection region.

 W_r is an *n*-dimensional hypersphere

(i.e. $\sum_{i=1}^{n} (x_i - \mu_0)^2 = r^2$).

 w_r is the intersection $W_r \cap w$.

STEP 7 (SIMPLIFY AND ARRIVE AT CONTRADICTION):

Simplifying (since K > 0) we get: $\alpha \ge \beta e^{-cL}$ and by symmetry $\beta \ge \alpha e^{-cL}$. Therefore, $\alpha = \beta$.

W is the sample space.

 $\mathbf{x} = (x_1, \dots, x_n)$ is a sample point.

w is the rejection region.

 W_r is an *n*-dimensional hypersphere

(i.e. $\sum_{i=1}^{n} (x_i - \mu_0)^2 = r^2$).

 w_r is the intersection $W_r \cap w$.

Ρ th p

Time Spent Doing PhD "Research"

The True Story of Dantzig's Homework

(University of Waterloo) Nathaniel T. Stevens (University of Waterloo)	11.20 11.45	Nom Hwui Kim (University
Distributions with the Probability of Agreement / Comparaison des distributions avec pro- E E	11:50-11:45	Topics in Component Me
iversity of Waterloo) Pengfei Li (University of Waterloo) Changbao Wu (University of	11:30-11:45	dans le cadre d'un partitio Augustine Wigle (University Investigating the Additivit
ric Empirical Likelihood Inference with Estimating Equations under Density Ratio Mod- e semi-paramétrique de vraisemblance empirique avec équations d'estimation en fonction e ratio de densités	15:30-15:45	d'additivité dans la méta-a Jiaxuan Mo (University of V Use of Laplace Approxim
iversity of Waterloo) Michael Wallace (University of Waterloo) Mary E. Thompson f Waterloo) eatment Regimes with Interference / Régimes de traitement dynamique avec in-	16:15-16:30	Laplace dans des équation Zhaohan Sun (University of Waterloo)
(University of Waterloo) Changbao Wu (University of Waterloo) Leilei Zeng (Univer-		Noisy Matrix Completion Complétion de la matrice
oo) ntervals for Fish Abundance Index with Survey Data / Intervalles de confiance de l'indice des poissons comportant des données d'enquête	16:30-16:45	et au temps Dylan Z Spicker (Universi (University of Western Or
niversity of Waterloo) Nathaniel T. Stevens (University of Waterloo) for Sample Size Determination with Comparative Probability MtX/Un cadre pour a de la taille d'échantillon avec mesures de probabilité comparativ Ve are to labub (University of Waterloo)	oo hard	Measurement Error Correct des données auxiliaires no Muang Yeh (University of of Waterloo)
's Introduction to Genomics / Introduction à la génomique particular de la	Our sto	Evaluating Real-time Upd DCCS Outcome Prediction application aux prévisions
esigns Involving Auxiliary Outcomes / Plans à deux phases conare not so	differe	Entering Xie (University of arge Sample Properties u
iversity of Waterloo) Martin Lysy (University of Waterloo) Reza Ramezan (University	13:45 14:00	sous un processus de visit
mate Inference for Spatial Extreme Value Models / Inférence approximative rapide pour	13.45-14.00	Privatizing Data Depth Fu
patiaux de valeur extrême (University of Waterloo)	14:00-14:15	Zehao Xu (University of Wa Loon.tourr: Interactive To
ne Learning Algorithms for Finding the Topics of COVID-19 Open Research Dataset y / Utilisation d'algorithmes d'apprentissage automatique pour trouver automatiquement 'ensemble de données de recherche ouvertes sur la COVID-19 niversity of Waterloo) Mary E. Thompson (University of Waterloo) Changhao Wu	16:00-16:30	Avinash Prasad (University of Waterloo) Dependence Modeling wi
Waterloo) d Misclassified Binary Observations in Complex Surveys / Observations binaires	15:45-16:00	Jie Jian (University of Waterl
al classées dans les enquêtes complexes		dans le temps à partir de d
nal classées dans les enquêtes complexes niversity of Waterloo) Martin Lysy (University of Waterloo) Audrey Béliveau (Univer- oo)	16:30-16:45	dans le temps à partir de d Pranav Subramani (Univers (University Of Waterloo) Sequential Parameter Lear

y of Waterloo) **Ryan Browne** (University erging in Model-based Clustering / Sujet onnement basé sur un modèle y of Waterloo) **Audrey Béliveau** (Univer ity Assumption in Component Network M analyse de réseau de composants Waterloo) **Martin Lysy** (University of W nation in Stochastic Differential Equation ns différentielles stochastiques f Waterloo) **Yeying Zhu** (University of W

on for Longitudinal Data with Subject e de bruit pour les données longitudinale

ity of Waterloo) **Michael Wallace** (Un ntario) ections with Non-IID Auxiliary Data / Co

on IID of Waterloo) Gregory Rice (University of

dated Probabilistic Forecasts With Appli ion / Évaluation des prévisions probabili s de résultats de la National Basketball A Waterloo) **Richard Cook** (University of under a Marker-Dependent Visit Process te dépendant de marqueurs

y of Waterloo) **Shoja'eddin Chenouri** (unctions / Confidentialisation des fonction aterloo) **Wayne Oldford** (University of V our Techniques / Loon.tourr : techniques of Waterloo) **Marius Hofert** (University

vith Generative Neural Networks / Modé ératifs

loo) **Peijun Sang** (University of Waterloo Networks from Multivariate Functional

données fonctionnelles multivariées

sity Of Waterloo) Nicholas Vadivelu (Un Lawrence Murray (Uber)

rning of SEIR Models in Birch / Apprent

Thank You. dylan.spicker@uwaterloo.ca

